Python SDK

Official Python SDK for Tenzro with both synchronous and asynchronous support. Perfect for data science, machine learning workflows, and backend applications.

PyPI package
Type hints
Async support
Jupyter ready

Installation

Install Python SDKbash
# Install with pip
pip install tenzro

# Install with async support
pip install tenzro[async]

# Install with all optional dependencies
pip install tenzro[all]

# Install from source
pip install git+https://github.com/tenzro/python-sdk.git

Quick Start

Basic Synchronous Usagepython
import tenzro
from tenzro import Tenzro

# Initialize the client
client = Tenzro(api_key="sk_your_key_here")

# Generate text with AI
response = client.cortex.generate(
    prompt="Write a hello world function in Python",
    model="gpt-4o",
    max_tokens=1000
)

print(response.content)
print(f"Tokens used: {response.tokens_used}")
print(f"Cost: ${response.cost_estimate}")

Asynchronous Usage

Async/Await with Concurrent Requestspython
import asyncio
from tenzro import AsyncTenzro

async def main():
    # Initialize async client
    async_client = AsyncTenzro(api_key="sk_your_key_here")
    
    try:
        # Generate text asynchronously
        response = await async_client.cortex.generate(
            prompt="Explain quantum computing",
            model="claude-3.5-sonnet",
            max_tokens=1000
        )
        
        print(response.content)
        
        # Multiple concurrent requests
        tasks = [
            async_client.cortex.generate(
                prompt=f"Explain {topic}",
                model="gpt-4o"
            )
            for topic in ["AI", "blockchain", "cloud computing"]
        ]
        
        results = await asyncio.gather(*tasks)
        for i, result in enumerate(results):
            print(f"Topic {i+1}: {result.content[:100]}...")
            
    finally:
        await async_client.close()

# Run the async function
asyncio.run(main())

Data Science Integration

Pandas & Data Analysispython
import pandas as pd
from tenzro import Tenzro

client = Tenzro()

# Load dataset
df = pd.read_csv("sales_data.csv")

# Generate insights with AI
data_summary = df.describe().to_string()

response = client.cortex.generate(
    prompt=f"""
    Analyze this sales dataset and provide insights:
    
    {data_summary}
    
    Provide 3 key insights and recommendations for improvement.
    """,
    model="claude-3.5-sonnet",
    max_tokens=1000
)

print("AI Analysis:")
print(response.content)

# Process each row with AI
insights = []
for index, row in df.head().iterrows():
    insight = client.cortex.generate(
        prompt=f"Analyze this sales record: {row.to_dict()}",
        model="gpt-4o",
        max_tokens=200
    )
    insights.append(insight.content)

# Add insights back to dataframe
df_sample = df.head().copy()
df_sample['ai_insights'] = insights

print(df_sample[['product', 'sales', 'ai_insights']])

Key Features

Async/Sync Support

Both synchronous and asynchronous APIs for maximum flexibility

Data Science Ready

Seamless integration with pandas, numpy, matplotlib, and Jupyter

ML Framework Compatible

Works with PyTorch, TensorFlow, scikit-learn, and Hugging Face

Type Hints

Complete type annotations for better IDE support and code quality

Streaming Support

Real-time streaming for chat, text generation, and live data

Robust Error Handling

Comprehensive error types with retry logic and rate limiting

Next Steps