Tenzro Grid
Distributed GPU training platform for machine learning workloads. Train models 70% cheaper with multi-cloud GPU access, spot instances, and intelligent optimization.
Key Features
Multi-Cloud GPU Access
Access GPUs from multiple providers with unified pricing and availability
- 70% cost reduction
- Higher availability
- Global regions
- 150 total nodes
Spot Instance Optimization
Automatically use spot instances with intelligent fallback strategies
- Up to 90% savings
- Auto-fallback
- Checkpoint recovery
- Interruption handling
Auto-Scaling
Dynamic resource scaling based on workload and queue depth
- Elastic compute
- Queue optimization
- Cost efficiency
- 1-20 max jobs
Performance Analytics
Real-time monitoring and optimization recommendations
- GPU utilization
- Cost tracking
- Performance insights
- 94.2% success rate
Queue Management
Intelligent job scheduling with priority and queue position tracking
- 12.5 min avg wait
- Priority scheduling
- Queue position
- Fair resource allocation
Enterprise Security
Secure training environments with data protection and compliance
- Private repositories
- Environment isolation
- Audit logging
- Compliance ready
Available GPU Types
Current cluster status: 150 total nodes, 67 available GPUs across multiple regions
NVIDIA L4
24GB Memory • Compute 8.9
45 available
Entry-level training
Small models, inference
NVIDIA A100
80GB Memory • Compute 8.0
12 available
High-performance training
Large models, research
NVIDIA H100
80GB Memory • Compute 9.0
8 available
Cutting-edge AI
Foundation models, enterprise
NVIDIA H200
80GB Memory • Compute 9.0
2 available
Next-generation AI
Massive models, breakthrough research
Queue Status: Average wait time: 12.5 minutes • Success rate: 94.2% • 85 active jobs
Code Examples
// Submit a training job with full configuration
const response = await fetch('https://api.tenzro.com/grid/train', {
method: 'POST',
headers: {
'X-API-Key': 'sk_your_key_here',
'Content-Type': 'application/json'
},
body: JSON.stringify({
name: "bert-finetuning-experiment",
framework: "pytorch-latest",
code_repository: "https://github.com/user/bert-training.git",
gpu_type: "A100",
parameters: {
learning_rate: 2e-5,
batch_size: 16,
epochs: 3,
model_name: "bert-base-uncased"
},
environment_vars: {
WANDB_API_KEY: "your_wandb_key",
HUGGINGFACE_TOKEN: "your_hf_token"
},
dataset_url: "gs://my-bucket/training-data/",
estimated_duration_hours: 4.0,
priority: "normal",
auto_scaling: {
enabled: true,
min_nodes: 1,
max_nodes: 4,
target_utilization: 80.0
},
spot_config: {
enabled: true,
max_price_multiplier: 0.7,
fallback_to_ondemand: true,
interruption_handling: "checkpoint"
},
enable_monitoring: true,
tags: {
project: "nlp-research",
team: "ml-team"
}
})
});
const job = await response.json();
console.log(`Job submitted: ${job.job_id}`);
console.log(`Estimated cost: $${job.estimated_cost}`);
Submit a comprehensive training job with all parameters
Supported Frameworks
PyTorch
Latest
Most popular deep learning framework
TensorFlow
Latest
Google's machine learning platform
Hugging Face
Latest
Transformers and NLP models
Custom
Any
Bring your own framework
Quick Start
2. Submit Your First Training Job
// Submit a simple training job
const response = await fetch('https://api.tenzro.com/grid/train', {
method: 'POST',
headers: {
'X-API-Key': 'sk_your_api_key_here',
'Content-Type': 'application/json'
},
body: JSON.stringify({
name: "my-first-training",
framework: "pytorch-latest",
code_repository: "https://github.com/your-username/your-repo.git",
gpu_type: "A100",
parameters: {
learning_rate: 2e-5,
batch_size: 16,
epochs: 3
},
estimated_duration_hours: 2.0,
spot_config: {
enabled: true,
max_price_multiplier: 0.7
}
})
});
const job = await response.json();
console.log(`Job started: ${job.job_id}`);
console.log(`Estimated cost: $${job.estimated_cost}`);
3. Monitor Your Training
// Monitor job progress
const jobId = "job_abc123";
const response = await fetch(`https://api.tenzro.com/grid/jobs/${jobId}`, {
headers: { 'X-API-Key': 'sk_your_api_key_here' }
});
const job = await response.json();
console.log(`Status: ${job.status}`);
console.log(`Progress: Epoch ${job.progress.epoch}/${job.progress.total_epochs}`);
console.log(`GPU Utilization: ${job.metrics.gpu_utilization}%`);
console.log(`Current cost: $${job.actual_cost}`);
Cost Optimization
Spot Instances
Use spot instances to reduce costs by up to 90% with automatic fallback to on-demand instances.
- Automatic checkpointing every epoch
- Intelligent interruption handling
- Seamless on-demand fallback
- 70% average savings reported
Smart Analytics
Get real-time cost optimization suggestions and performance insights.
- Real-time cost tracking
- Performance benchmarking
- Optimization recommendations
- Usage analytics and reporting
Need help? Check out our Quick Start guide or contact support