Tenzro Grid

Distributed GPU training platform for machine learning workloads. Train models 70% cheaper with multi-cloud GPU access, spot instances, and intelligent optimization.

Key Features

Multi-Cloud GPU Access

Access GPUs from multiple providers with unified pricing and availability

  • 70% cost reduction
  • Higher availability
  • Global regions
  • 150 total nodes

Spot Instance Optimization

Automatically use spot instances with intelligent fallback strategies

  • Up to 90% savings
  • Auto-fallback
  • Checkpoint recovery
  • Interruption handling

Auto-Scaling

Dynamic resource scaling based on workload and queue depth

  • Elastic compute
  • Queue optimization
  • Cost efficiency
  • 1-20 max jobs

Performance Analytics

Real-time monitoring and optimization recommendations

  • GPU utilization
  • Cost tracking
  • Performance insights
  • 94.2% success rate

Queue Management

Intelligent job scheduling with priority and queue position tracking

  • 12.5 min avg wait
  • Priority scheduling
  • Queue position
  • Fair resource allocation

Enterprise Security

Secure training environments with data protection and compliance

  • Private repositories
  • Environment isolation
  • Audit logging
  • Compliance ready

Available GPU Types

Current cluster status: 150 total nodes, 67 available GPUs across multiple regions

NVIDIA L4

24GB Memory • Compute 8.9

45 available

$0.45
per hour

Entry-level training

Small models, inference

NVIDIA A100

80GB Memory • Compute 8.0

12 available

$1.85
per hour

High-performance training

Large models, research

NVIDIA H100

80GB Memory • Compute 9.0

8 available

$3.75
per hour

Cutting-edge AI

Foundation models, enterprise

NVIDIA H200

80GB Memory • Compute 9.0

2 available

$5.50
per hour

Next-generation AI

Massive models, breakthrough research

Queue Status: Average wait time: 12.5 minutes • Success rate: 94.2% • 85 active jobs

Code Examples

Submit Training Jobtypescript
// Submit a training job with full configuration
const response = await fetch('https://api.tenzro.com/grid/train', {
  method: 'POST',
  headers: {
    'X-API-Key': 'sk_your_key_here',
    'Content-Type': 'application/json'
  },
  body: JSON.stringify({
    name: "bert-finetuning-experiment",
    framework: "pytorch-latest",
    code_repository: "https://github.com/user/bert-training.git",
    gpu_type: "A100",
    parameters: {
      learning_rate: 2e-5,
      batch_size: 16,
      epochs: 3,
      model_name: "bert-base-uncased"
    },
    environment_vars: {
      WANDB_API_KEY: "your_wandb_key",
      HUGGINGFACE_TOKEN: "your_hf_token"
    },
    dataset_url: "gs://my-bucket/training-data/",
    estimated_duration_hours: 4.0,
    priority: "normal",
    auto_scaling: {
      enabled: true,
      min_nodes: 1,
      max_nodes: 4,
      target_utilization: 80.0
    },
    spot_config: {
      enabled: true,
      max_price_multiplier: 0.7,
      fallback_to_ondemand: true,
      interruption_handling: "checkpoint"
    },
    enable_monitoring: true,
    tags: {
      project: "nlp-research",
      team: "ml-team"
    }
  })
});

const job = await response.json();
console.log(`Job submitted: ${job.job_id}`);
console.log(`Estimated cost: $${job.estimated_cost}`);

Submit a comprehensive training job with all parameters

Supported Frameworks

🔥

PyTorch

Latest

Most popular deep learning framework

🧠

TensorFlow

Latest

Google's machine learning platform

🤗

Hugging Face

Latest

Transformers and NLP models

🛠️

Custom

Any

Bring your own framework

Quick Start

1. Get Your API Key

Sign up for Tenzro and get your API key from the platform dashboard.

Get API Key

2. Submit Your First Training Job

typescript
// Submit a simple training job
const response = await fetch('https://api.tenzro.com/grid/train', {
  method: 'POST',
  headers: {
    'X-API-Key': 'sk_your_api_key_here',
    'Content-Type': 'application/json'
  },
  body: JSON.stringify({
    name: "my-first-training",
    framework: "pytorch-latest",
    code_repository: "https://github.com/your-username/your-repo.git",
    gpu_type: "A100",
    parameters: {
      learning_rate: 2e-5,
      batch_size: 16,
      epochs: 3
    },
    estimated_duration_hours: 2.0,
    spot_config: {
      enabled: true,
      max_price_multiplier: 0.7
    }
  })
});

const job = await response.json();
console.log(`Job started: ${job.job_id}`);
console.log(`Estimated cost: $${job.estimated_cost}`);

3. Monitor Your Training

typescript
// Monitor job progress
const jobId = "job_abc123";
const response = await fetch(`https://api.tenzro.com/grid/jobs/${jobId}`, {
  headers: { 'X-API-Key': 'sk_your_api_key_here' }
});

const job = await response.json();
console.log(`Status: ${job.status}`);
console.log(`Progress: Epoch ${job.progress.epoch}/${job.progress.total_epochs}`);
console.log(`GPU Utilization: ${job.metrics.gpu_utilization}%`);
console.log(`Current cost: $${job.actual_cost}`);

Cost Optimization

Spot Instances

Use spot instances to reduce costs by up to 90% with automatic fallback to on-demand instances.

  • Automatic checkpointing every epoch
  • Intelligent interruption handling
  • Seamless on-demand fallback
  • 70% average savings reported

Smart Analytics

Get real-time cost optimization suggestions and performance insights.

  • Real-time cost tracking
  • Performance benchmarking
  • Optimization recommendations
  • Usage analytics and reporting